Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(11): 1254-1264, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37267939

RESUMO

Fusarium wilt has occurred in the main Piper nigrum cultivation regions, which seriously affects the yield and quality of P. nigrum. To identify the pathogen of this disease, the diseased roots were collected from a demonstration base in Hainan Province. The pathogen was obtained by tissue isolation method and confirmed by pathogenicity test. Based on the morphological observation, sequence analyses of TEF1-α nuclear gene, Fusarium solani was identified as the pathogen causing P. nigrum Fusarium wilt and induced symptoms on inoculated plants, including chlorosis, necrotic spots, wilt, drying, and root rot. The experiments for the antifungal activity showed that all the 11 fungicides selected in this study showed certain inhibitory effects on the colony growth of F. solani, where 2% kasugamycin AS, 45% prochloraz EW, 25 g·L-1 fludioxonil SC and 430 g·L-1 tebuconazole SC exhibited relative higher inhibitory effects with EC50 as 0.065, 0.205, 0.395, and 0.483 mg·L-1 , respectively, and were selected to perform SEM analysis and test in seeds in vitro. The SEM analysis showed that kasugamycin, prochloraz, fludioxonil, and tebuconazole might have exerted their antifungal effect by damaging F. solani mycelia or microconidia. These preparations were applied as a seed coating of P. nigrum Reyin-1. The kasugamycin treatment was most effective in reducing the harmful impact of F. solani on the seed germination. These results presented herein provide useful guidance for the effective control of P. nigrum Fusarium wilt.


Assuntos
Fungicidas Industriais , Fusarium , Piper nigrum , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , China
2.
Plant Dis ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157095

RESUMO

Pandanus amaryllifolius, also known as pandan, is a perennial herb, growing in Indonesia, China and the Maluku Islands (Wakte et al. 2009). It is the only plant with aromatic leaves in the Pandanaceae. It is widely used in food, medicine, cosmetics and other industries, and is also known as "Oriental Vanilla." Pandan is planted in Hainan province over 1,300 ha and is the main plant intercropped among the forest trees. From 2020, the leaf spot was surveyed for three years. Diseased leaves occurred on 30 to 80% of the surveyed plants, with an incidence of 70% and yield losses of 40%. The disease occured from mid-November to April and was most severe at low temperatures and humidity. Initial symptoms were pale green spots, that formed dark brown, nearly circular lesions. As the lesions expanded, their centers became greyish white, with yellow halos at the junction of the diseased and healthy tissue. When the humidity was high, there were small black spots scattered in the center of the lesion. Symptomatic leaf samples were collected from four different sites. The leaf surface was disinfested with 75% ethyl alcohol for 30 s and washed with sterile distilled water three times. Samples from the junction of diseased and healthy tissue (0.5 × 0.5 cm) were removed and placed on potato dextrose agar (PDA) medium containing 100 µg/mL of cefotaxime sodium and cultivated in a dark incubator at 28°C. After two days, hyphal tips from the edges of growing colonies were transferred to fresh PDA plates for further purification. Following Koch's postulates, colonies from strains were used as inoculum in pathogenicity tests. Colonies with 5 mm diameter were inoculated upside onto fresh and healthy pandan leaves via wounding method (pinpricked by sterilized needles) and non-wounding method. Sterilized PDA was used as control. All plants were setted three replicates and were incubated at 28℃ for 3 to 5 days. When symptoms on leaves similar to those in the field appeared, the fungus were reisolated The colonies formed on PDA were also consistent with the original isolate (Scandiani et al, 2003). After seven days, the colony covered the whole petri dish with white, petal-shaped growth with a slight concentric, annular bulge in the center, irregular edges, with black acervuli emerging at a later stage of colony growth. Conidia were fusiform, 18.1±1.6 × 6.4±0.3 µm, showing four septations and five cells, the middle three cells were brownish black to olivaceous, and the apical cell colorless with two to three filaments, 21.8±3.5 µm long. The caudate cell was colorless with one stalk 5.9±1.8 µm long (Zhang et al. 2021; Shu et al. 2020). According to the colony and conidia characteristics, the pathogen was initially identified as Pestalotiopsis spp. (Benjamin et al. 1961). To confirm the pathogen identity, we used the universal primers ITS1/ITS4, targeting primers EF1-728F/EF1-986R and Bt2a/Bt2b sequences (Tian et al. 2018). The sequences of the PCR products were deposited in NCBI GenBank with accession numbers OQ165166 (ITS), OQ352149 (TEF1-α) and OQ352150 (TUB2). BLAST results showed that the sequences of the ITS, TEF1-α and TUB2 genes shared 100% homology with the sequences of Pestalotiopsis clavispora. The maximum likelihood method was used in the phylogenetic analysis. The result showed that LSS112 was clustered with Pestalotiopsis clavispora with a support rate of 99%. Based on morphological and molecular characteristics, the pathogen was confirmed as Pestalotiopsis clavispora. To our knowledge, this is the first report of leaf spot of pandan caused by Pestalotiopsis clavispora in China. This research will be immediately helpful for the diagnosis and control the disease on pandan.

3.
Bull Entomol Res ; 112(2): 151-161, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35301961

RESUMO

The coffee white stem borer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), is a major destructive pest of Coffea arabica L. (Gentianales: Rubiaceae), widely planted in many Asian countries, including China. Quantitative real-time polymerase chain reaction (qRT-PCR) is a common method for quantitative analysis of gene transcription levels. To obtain accurate and reliable qRT-PCR results, it is necessary to select suitable reference genes to different experimental conditions for normalizing the target gene expression. However, the stability of the expression of reference genes in X. quadripes has rarely been studied. In this study, the expression stability of nine candidate reference genes were investigated under biotic and abiotic conditions for use in qRT-PCR's normalization. By integrating the results of four algorithms of NormFinder, BestKeeper, geNorm, and RefFinder, the optimal reference gene combinations in different experimental conditions were performed as follows: RPL10a and EIF3D were the optimal reference genes for developmental stage samples, EIF4E, RPL10a, and RPS27a for tissue samples, V-ATP and EF1α for the sex samples, EIF3D and V-ATP for temperature treatment, RPS27a and RPL10a for insecticide stress, and RPL10a, RPS27a, and EF1α for all the samples. This study will help to obtain the stable internal reference genes under biotic and abiotic conditions and lay the foundation for in-depth functional research of target genes or genomics on olfactory molecular mechanisms, temperature adaptability, and insecticide resistance in X. quadripes.


Assuntos
Besouros , Inseticidas , Animais , Ásia , Café/metabolismo , Besouros/genética , Besouros/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
J Insect Sci ; 20(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31925425

RESUMO

Diaphania caesalis (Walker) is an important boring insect mainly distributed in subtropical and tropical areas and attacked tropical woody grain crops, such as starchy plants of Artocarpus. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful approach for investigating target genes expression profiles at the transcriptional level. However, the identification and selection of internal reference genes, which is often overlooked, is the most vital step before the analysis of target gene expression by qRT-PCR. So far, the reliable internal reference genes under a certain condition of D. caesalis have not been investigated. Therefore, this study evaluated the expression stability of eight candidate reference genes including ACT, ß-TUB, GAPDH, G6PDH, RPS3a, RPL13a, EF1α, and EIF4A in different developmental stages, tissues and sexes using geNorm, NormFinder and BestKeeper algorithms. To verify the stability of the recommended internal reference genes, the expression levels of DcaeOBP5 were analyzed under different treatment conditions. The results indicated that ACT, RPL13a, ß-TUB, RPS3a, and EF1α were identified as the most stable reference genes for further studies on target gene expression involving different developmental stages of D. caesalis. And ACT and EIF4A were recommended as stable reference genes for different tissues. Furthermore, ACT, EF1α, and RPS3a were ranked as the best reference genes in different sexes based on three algorithms. Our research represents the critical first step to normalize qRT-PCR data and ensure the accuracy of expression of target genes involved in phylogenetic and physiological mechanism at the transcriptional level in D. caesalia.


Assuntos
Expressão Gênica , Genes de Insetos , Mariposas/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
5.
Sci Rep ; 9(1): 13291, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527603

RESUMO

Helopeltis theivora Waterhouse is a predominant sucking pest in many tropic economic crops, such as tea, cocoa and coffee. Quantitative real-time PCR (qRT-PCR) is one of the most powerful tools to analyze the gene expression level and investigate the mechanism of insect physiology at transcriptional level. Gene expression studies utilizing qRT-PCR have been applied to numerous insects so far. However, no universal reference genes could be used for H. theivora. To obtain accurate and reliable normalized data in H. theivora, twelve candidate reference genes were examined under different tissues, developmental stages and sexes by using geNorm, NormFinder, BestKeeper, Delta Ct and RefFinder algorithms, respectively. The results revealed that the ideal reference genes differed across the treatments, and the consensus rankings generated from stability values provided by these programs suggested a combination of two genes for normalization. To be specific, RPS3A and Actin were the best suitable reference genes for tissues, RPL13A and GAPDH were suitable for developmental stages, EF1α and RPL13A were suitable for sexes, and RPL13A and RPS3A were suitable for all samples. This study represents the first systematic analysis of reference genes for qRT-PCR experiments in H. theivora, and the results can provide a credible normalization for qRT-PCR data, facilitating transcript profiling studies of functional genes in this insect.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Insetos/genética , Heterópteros/genética , Proteínas de Insetos/genética , Animais , Expressão Gênica/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Fator 1 de Elongação de Peptídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Proteínas Ribossômicas/genética
6.
Braz J Microbiol ; 46(3): 911-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413078

RESUMO

A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China) using Jerusalem artichoke power (JAP) as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by (60)Co γ-irradiation. A genetically stable mutant (designated E12) was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL) than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL) could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Reatores Biológicos/microbiologia , Glicosídeo Hidrolases/metabolismo , Helianthus/microbiologia , Aspergillus niger/metabolismo , China , Meios de Cultura , Etanol/metabolismo , Fermentação/fisiologia , Inulina/metabolismo , Tipagem Molecular , Mutação , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
7.
Braz. j. microbiol ; 46(3): 911-920, July-Sept. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755798

RESUMO

A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China) using Jerusalem artichoke power (JAP) as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by 60Co γ-irradiation. A genetically stable mutant (designated E12) was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL) than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL) could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12.

.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Reatores Biológicos/microbiologia , Glicosídeo Hidrolases/metabolismo , Helianthus/microbiologia , Aspergillus niger/metabolismo , China , Meios de Cultura , Etanol/metabolismo , Fermentação/fisiologia , Inulina/metabolismo , Tipagem Molecular , Mutação , Técnicas de Tipagem Micológica , Rizosfera , /genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...